OPERATIONS RESEARCH

Paper Code: 
MBAS 227
Credits: 
4
Contact Hours: 
60.00
Max. Marks: 
100.00
Objective: 

This course will equip students with essential Operations Research principles, techniques, and analytical skills to tackle real-world problems effectively, fostering critical thinking and decision-making abilities in diverse scenarios.

Course Outcomes: 

Course

Learning outcome

(at course level)

Learning and teaching strategies

Assessment Strategies

Course Code

Course title

24MBAS

227

OPERATIONS RESEARCH

(Theory)

CO92: analyze real-world problems and determine whether they are suitable for Operations Research (OR) techniques

CO93: evaluate the sensitivity of linear programming solutions to changes in input parameters, applying sensitivity analysis techniques to optimize decision-making processes.

CO94: analyze transportation and assignment problems, identifying unbalanced scenarios, degeneracy, and multiple optimal solutions

CO95:  design and implement

decision-making frameworks that

integrate decision theory principles and queuing theory

concepts

CO96: evaluate the strategic

implications of different game-

theoretic strategies and assess

the stability and equilibrium of

Markov chains.

CO97: Contribute effectively in

course-specific interaction

Approach in teaching: Interactive

Lectures, Group Discussion, Tutorials, Case Study

 

Learning activities for the students:

Self-learning assignments, presentations

.Class test,

Semester end

examinations,

Quiz, Assignments,

Presentation

 

12.00
Unit I: 
Operations Research, Linear Programming and Simplex method

Operations Research- Meaning, Nature, Scope and Role of Operations Research, Scientific approach in decision-making, Techniques of OR, Limitations of OR

Linear Programming-Mathematical formulation of Linear Programming problems and their solution using Graphic approach. Simplex method.

12.00
Unit II: 
Linear Programming, Sensitivity Analysis and Transportation

Linear Programming- Special Cases-Unbounded solution, Multiple Solutions, Non-Feasible solutions, Degenerate solutions, Primal and its dual.

    Introduction to Sensitivity Analysis

    Transportation-General structure of transportation problem, methods of finding initial basic feasible solution (NWCM, LCM & VAM), test for optimality (MODI Method), Cases of unbalanced problems, Degeneracy, Multiple solutions and Prohibited Routes.

12.00
Unit III: 
Assignment

Assignment- Solving the problem. Cases of unbalanced problems, multiple optimum solutions, maximization objective and unacceptable assignments Sequencing Problems- General Assumptions, Basic Terminology, Processing n-jobs through two machines, Processing n-jobs through three machines,Processing n-jobs through m- machines

12.00
Unit IV: 
Decision and Queuing theory

Decision Theory-Decision-Making under certainty, uncertainty and risk, Decision tree analysis ,

Queuing theory-introduction, elementary queuing system, single channel queuing model ( with Poisson arrivals and exponential service times.)

12.00
Unit V: 
Theory of Games

Theory of Games-Two persons Zero Sum games. Markov’s analysis- Introduction, application, state transition matrix, n steps transition, probabilities, Markov Chain Algorithm.

*Case studies related to entire topics are to be taught.

Essential Readings: 

· Shrivastava Shenoy Sharma, Quantitative Techniques in Management, New Age Publications

· J. K. Sharma, Operations Research”, McMillan India

· N. D. Vohra ,Quantitative Techniques in Management”, Tata McGraw Hill Publications

· Anderson Williams ,Quantitative Methods for Business, 10th Edition Thopson

References: 

· Tulisian, Quantitative Techniques Theory and Problems, Pearson Education.

· S. D. Sharma, Operations Research, Kedar Nath and Ram Nath & Co. Ltd.

     E-resources:

· Softwares & Tools: Excel Solver and R Studio

· https://www.tes.com/resources/search/?authorId=21446845

      Journals:

· Operations Research, https://pubsonline.informs.org/journal/opre

· Management Science, https://pubsonline.informs.org/journal/mnsc

Academic Year: